(Set-R₁)

B.Tech-6th Control System Engg.

Full Marks: 70

Time: 3 hours

Answer Q. No. 1 and any five from the rest

The figures in the right-hand margin indicate marks

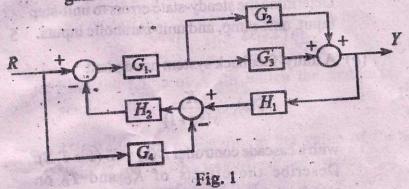
Symbols carry usual meaning

- 1. Answer the following questions:
 - (a) What are the advantages of closed-loop control systems over open-loop control systems?
 - (b) Determine the settling time for 2% band for a system with closed-loop transfer function

$$H(s)=\frac{9}{s^2+4s+9}.$$

(c) What is the Routh's Stability criterion?

(Turn Over)


- (d) What is the effect of addition of a pole to the system?
- (e) What are the differences between PI and PD control?
- (f) A system is described by the transfer function

$$H(s) = \frac{1}{s^3 + \alpha s^2 + Ks + 3}.$$

What are the constraints on α and k for the system to be stable?

- (g) Define the state variable of a system.
- (h) What are the main problems associated with implementation of digital control?
 - (i) What is the Shannon's sampling theorem ?-
 - (j) State the final value theorem of the z-transform.
- 2. (a) Convert the block diagram of Fig. 1 to a signal flow-graph, and therefrom obtain the

input-output transfer function using Mason's gain rule.

(b) Then open-loop transfer function of a unity-feedback control system is given as

$$G(s) = \frac{K(s+1)}{s(s-1)(s^2+4s+16)}.$$

Determine the value of K which causes sustained oscillation. Also determine the corresponding frequency of oscillation.

3. (a) A unity-feedback system is characterized by the open-loop transfer function

B. Tech-6th/Control System Engg. (Set-R.)

(Turn Over)

5

$$G(s) = \frac{1}{s(0.5s+1)(0.2s+1)}$$

Determine the steady-state errors to unit-step input, unit-ramp, and unit-parabolic inputs.

(b) A unity-feedback system has a plant

$$G(s) = \frac{K}{s(\tau s + 1)}$$

with a cascade controller $D(s) = K_C(1 + T_D S)$. Describe the effects of K_C and T_D on steady-state error, settling time, and peak overshoot of the system.

4. Plot the root loci for a closed-loop unity feedback control system having the forward path function

$$G(s) = \frac{K(s+9)}{s(s^2+4s+11)}$$

Locate the closed-loop poles on the root loci such that the dominant closed-loop poles have a damping ratio equal to 0.5. Determine the corresponding value of gain K.

B. Tech-6th/Control System Engg. (Set-R₁)

(Continued)

Sketch the Nyquist plot for a feedback system with open-loop transfer function

$$G(s)H(s) = \frac{K(s+1)}{s(s-1)(s^2+4s+16)}; K > 0$$

Find the range of K for which the system is stable.

6. Use Bode plot to determine the value of the gain K for which a unity-feedback system with open-loop transfer function

$$G(s) = \frac{10K(s+0\cdot 1)}{(s+2)(s+4)(s+5)}$$

gives phase margin of 50° . Also determine the gain margin at this value of K.

7. (a) Consider the system described by

$$\ddot{y} + 3\ddot{y} + 2\dot{y} = u$$

Derive a state-space representation of the system.

B. Tech-6th/Control System Engg. (Set-R₁)

(Turn Over)

(b) For the transfer function models and inputs given below, find the response y(k) as a function of k:

$$G(z) = \frac{Y(z)}{R(z)} = \frac{2z - 3}{(z - 0.5)(z + 0.3)}$$

$$r(k) = \begin{cases} 1; & k = 1 \\ 0; & k = 0, 2, 3, 4... \end{cases}$$

- 8. Write short notes on any two of the following: 5×2
 - (i) Zeigler-Nichols method of tuning PID controller
 - (ii) Constant M and N circle method of stability analysis
 - (iii) Transfer function of a Zero Order Hold
 Device
 - (iv) Properties of the Z-transform.